Math 155, Lecture Notes- Bonds 
Name____________
Section 9.2 Series and Convergence
Usually, we study infinite sequences in order to study “infinite summations.” That is we want to consider what happens when we add tighter an infinite number of terms from a sequence. In this section we will begin our study of infinite series. 
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To find the sum of an infinite series, we will consider the corresponding sequence of partial sums listed below:
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the nth partial sum is given by

n

o
If the sequence of partial sums {S,} converges to S, then the series E a,
n=1
converges. The limit S is called the sum of the series.
S=a,+a,+---+a,+---

If {S,} diverges, then the series diverges.





more Ex. 1:
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Since the sequence of partial sums converges to 1, 
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Geometric Sequences and Series
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Ex. 2:
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Ex. 3:
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[image: image15.png]THEOREM 9.6 Convergence of a Geometric Series

A geometric series with ratio r diverges if || = 1.1f 0 < |r| < 1, then the
series converges to the sum
=

ar'" =
=3 1—r

, 0<|r| <1

n





[image: image16.wmf]
[image: image17.wmf]
Ex. 4: Find the sum: 
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Ex. 5: Find the sum: 
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Ex. 6: Find the sum: 
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Ex. 7: Find the sum: 
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Ex. 8: (a) Find all values of x for which 
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(b) For these values of x, write the sum of the series. 
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Telescoping Series- “sometimes you get lucky”           [image: image24.png]



A telescoping series is a special form that “collapses” like an old-fashioned telescope.
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Since the “interior” terms cancel, we can consider the nth partial sum:


[image: image26.wmf]
If the series converges, we can use this nth partial sum to find the sum of the series by taking the limit:
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Ex. 9: Find the sum: 
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Ex. 9: Continued
Series convergence implies that the nth term tends to zero. Here are two theorems about this:
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[image: image30.png]THEOREM 9.9 nth-Term Test for Divergence
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Ex. 10: Find the sum: 
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Ex. 11: Find the sum: 
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Ex. 12: Find the sum: 
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